Docking kinetics and equilibrium of a GAAA tetraloop-receptor motif probed by single-molecule FRET.
نویسندگان
چکیده
Docking kinetics and equilibrium of fluorescently labeled RNA molecules are studied with single-molecule FRET methods. Time-resolved FRET is used to monitor docking/undocking transitions for RNAs containing a single GAAA tetraloop-receptor tertiary interaction connected by a flexible single-stranded linker. The rate constants for docking and undocking are measured as a function of Mg2+, revealing a complex dependence on metal ion concentration. Despite the simplicity of this model system, conformational heterogeneity similar to that noted in more complex RNA systems is observed; relatively rapid docking/undocking transitions are detected for approximately two-thirds of the RNA molecules, with significant subpopulations exhibiting few or no transitions on the 10- to 30-s time scale for photobleaching. The rate constants are determined from analysis of probability densities, which allows a much wider range of time scales to be analyzed than standard histogram procedures. The data for the GAAA tetraloop receptor are compared with kinetic and equilibrium data for other RNA tertiary interactions.
منابع مشابه
Metal ion dependence, thermodynamics, and kinetics for intramolecular docking of a GAAA tetraloop and receptor connected by a flexible linker.
The GAAA tetraloop-receptor motif is a commonly occurring tertiary interaction in RNA. This motif usually occurs in combination with other tertiary interactions in complex RNA structures. Thus, it is difficult to measure directly the contribution that a single GAAA tetraloop-receptor interaction makes to the folding properties of a RNA. To investigate the kinetics and thermodynamics for the iso...
متن کاملThe GAAA tetraloop-receptor interaction contributes differentially to folding thermodynamics and kinetics for the P4-P6 RNA domain.
Tetraloops with the generic sequence GNRA are commonly found in RNA secondary structure, and interactions of such tetraloops with "receptors" elsewhere in RNA play important roles in RNA structure and folding. However, the contributions of tetraloop-receptor interactions specifically to the kinetics of RNA tertiary folding, rather than the thermodynamics of maintaining tertiary structure once f...
متن کاملMolecular-crowding effects on single-molecule RNA folding/unfolding thermodynamics and kinetics.
The effects of "molecular crowding" on elementary biochemical processes due to high solute concentrations are poorly understood and yet clearly essential to the folding of nucleic acids and proteins into correct, native structures. The present work presents, to our knowledge, first results on the single-molecule kinetics of solute molecular crowding, specifically focusing on GAAA tetraloop-rece...
متن کاملEntropic origin of Mg2+-facilitated RNA folding.
Mg(2+) is essential for the proper folding and function of RNA, though the effect of Mg(2+) concentration on the free energy, enthalpy, and entropy landscapes of RNA folding is unknown. This work exploits temperature-controlled single-molecule FRET methods to address the thermodynamics of RNA folding pathways by probing the intramolecular docking/undocking kinetics of the ubiquitous GAAA tetral...
متن کاملProbing the kinetic and thermodynamic consequences of the tetraloop/tetraloop receptor monovalent ion-binding site in P4-P6 RNA by smFRET.
Structured RNA molecules play roles in central biological processes and understanding the basic forces and features that govern RNA folding kinetics and thermodynamics can help elucidate principles that underlie biological function. Here we investigate one such feature, the specific interaction of monovalent cations with a structured RNA, the P4-P6 domain of the Tetrahymena ribozyme. We employ ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 102 30 شماره
صفحات -
تاریخ انتشار 2005